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ABSTRACT 

Christie-Blick, N., 1991. Onlap, ofttap, and the origin of unconformity-bounded depositional sequences. Mar. Geol., 97: 35-56. 

Unconformity-bounded depositional sequences represent the fundamental building blocks of sedimentary successions. They 
are typically characterized by onlap at the base and by offlap at the top, and they tend to be markedly asymmetrical, with 
onlap accounting for a larger part of any cycle of sedimentation than offlap. Offlap cannot be attributed solely to erosional 
truncation, but instead implies that sequence boundaries develop over a finite interval of time. Depositional sequences are 
commonly associated with a cyclic arrangement of facies, but transgressive-regressive cycles are out of phase with respect to 
sequence boundaries, which in down-dip locations are both overlain and underlain by progradational deposits, and hence form 
during times of regression of the shoreline. 

These observations are used to develop some ideas about the origin of unconformity-bounded sequences, with reference to 
the inter-related roles of changes in depositional base level and sediment supply. In particular, it is shown than onlap and 
offlap are due to lateral migration of a "line of critical bypassing", defined so as to incorporate the effects of sediment loading 
and compaction as well as the rate of change of elevation with respect to sea level. Downward shifts in onlap may be achieved 
by either an increase in the rate of eustatic fall or a decrease in the rate of tectonic subsidence, and it is premature to assume 
that eustatic and tectonic controls on sea level may be distinguished solely on the basis of the frequency of depositional 
cyclicity. Small shifts in the position of onlap can also be produced by changes in sediment supply, and more attention needs 
to be paid to the influence of sediment supply in the development of minor boundaries. Unconformities related to eustatic 
fluctuations are thought to correspond approximately to times of relatively rapid sea-level fall (inflection points), but questions 
remain about the existence of possible leads and lags of up to ~ cycle, and hence about the degree to which sequence boundaries 
of eustatic origin may vary in age both within a given basin and from one basin to another. 

Introduction 

The sedimentary record is fundamenta l ly  discon- 

t inuous  at a variety of scales as a result of  secular 

changes in pat terns  of erosion, t ranspor t ,  in situ 
produc t ion  and  accumula t ion  of  sediment  (Barrell, 

1917; Wheeler,  1958; Sloss, 1963, 1988; Frazier,  

1974; Vail et al., 1977, 1984; Ager, 1981; Dott ,  1983; 

This article was originally submitted for publication in a special 
issue of Marine Geology on "The Record of Sea-Level Fluctua- 
tion'. When the special issue was transferred to Sedimentary 
Geology, the author requested that the full version of the paper 
be published in a regular issue of Marine Geology, and that an 
extended abstract be included in the special issue (Sedimentary" 
Geology, Vol. 70). 

James, 1984; Schlee, 1984; Berg and  Woolver ton,  

1985; In te rna t iona l  Subcommiss ion  on Strati- 

graphic Classification, 1987; Vail, 1987; Van Wag- 

oner  et al., 1987, 1988, 1990; James and  Leckie, 

1988; Gal loway,  1989). Strat igraphic discont inui t -  

ies (unconformit ies)  are expressed by breaks in 

facies or biotic successions and  by geometric pat-  

terns of  stratal  on lap  and  offlap that  are in places 

directly observable in outcrop (e.g., Bosellini, 

1984, 1988; Mutt i ,  1985; Sarg, 1988, 1989; Garcia-  

Mond~ja r  and  Fern~indez-Mendiola,  1989, 1991) 

and  well-log cross sections (e.g., Van Wagoner  

et al., 1990; Mi t chum and  Van Wagoner ,  1991), 
and  imaged in seismic reflection profiles (e.g., Vail 
et al., 1977, 1984; Berg and  Woolver ton,  1985; 
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Bally, 1987, 1988, 1989; Eberli and Ginsburg, 
1989). Relatively conformable successions of genet- 
ically related strata bounded by unconformities and 
their correlative conformities are termed deposi- 
tional sequences (Mitchum, 1977; Vail, 1987; Van 
Wagoner et al., 1987, 1988, 1990), and the recogni- 
tion of such sequences forms the basis of the rapidly 
developing fields of seismic and sequence stratigra- 
phy (for alternative usage of the term sequence, see 
International Subcommission on Stratigraphic 
Classification, 1987; Galloway, 1989). 

There is general agreement that patterns of 
sediment accumulation and preservation are con- 
trolled largely by the interaction of subsidence, 
eustasy and sediment supply, and less directly or 
to a lesser extent by such factors as topography, 
climate, river discharge and ambient oceano- 
graphic conditions (Pitman, 1978, 1990; Pitman 
and Golovchenko, 1983; Watts and Thorne, 1984; 
Burton et al., 1987; Helland-Hansen et al., 1988; 
Jervey, 1988; Kendall and Lerche, 1988; Posamen- 
tier et al., 1988; Sarg, 1988; Angevine, 1989; 
Butcher, 1989; Galloway, 1989; Christie-Blick et 
al., 1990; Jordan and Flemings, 1990; Lawrence et 
al., 1990; Reynolds et al., 1990; Thorne and Swift, 
1990). A key notion, and one that is perhaps self- 
evident, is that sediments accumulate at a given 
site only to the extent that space (or accommoda- 
tion) is available for them. However, serious ques- 
tions remain about precisely how patterns of 
sedimentation respond to changes in accommoda- 
tion or sediment supply, and especially about how 
variations in these controls may influence the 
timing of unconformity development (Posamentier 
et al., 1988; Christie-Blick et al., 1990; Jordan and 
Flemings, 1990; Reynolds et al., 1990). For exam- 
ple, given the fact that sediments accumulate both 
above and below sea level, what actually limits the 
accommodation at a particular locality at a partic- 
ular time? To what extent do sequence boundaries 
have time-stratigraphic significance within a given 
sedimentary basin, and to what extent are they 
either diachronous (Johnson, 1987; Christie-Blick 
et al., 1990) or composed in different places of 
several closely spaced but stratigraphically distinct 
surfaces? With what resolution are sequence 
boundaries of eustatic origin in different basins 
both correlative (that is, related to the same eu- 

static events) and of the same age (Christie-Blick, 
1990; Christie-Blick et al., 1990; Jordan and Flem- 
ings, 1990; Reynolds et al., 1990)? 

The purpose of this article is to develop some 
simple ideas about the origin of unconformity- 
bounded depositional sequences, focussing espe- 
cially on the surfaces themselves, and to draw 
attention to some implications for the problem of 
gauging eustatic change from the stratigraphic 
record. The main contribution is to extend con- 
cepts of backstripping (Steckler and Watts, 1978) 
and geohistory analysis (Van Hinte, 1978) to show 
how conditions for the development of an uncon- 
formity can be quantified in terms of rates of 
tectonic subsidence, sediment accumulation, eu- 
static change and change in elevation with respect 
to the sea surface. This last term is analogous to 
the water depth term of the conventional backstrip- 
ping equation, but it takes into account the 
different isostatic response for sediments deposited 
above sea level. 

Basic observations 

Observations distilled from numerous examples 
of unconformity-bounded depositional sequences 
in both the subsurface and outcrop indicate that 
facies are arranged in a systematic way with respect 
to stratal geometry (Fig. 1) (Haq et al., 1987, 1988; 
Vail, 1987; Van Wagoner et al., 1987, 1988, 1990; 
Sarg, 1988). Details vary of course, according to 
tectonic and paleogeographic setting, sediment 
type and eustatic history, and as a function of 
scale, but certain attributes appear to be generally 
present, independent of age and setting. Even at 
different scales, depositional sequences are very 
similar (Fulthorpe and Carter, 1989; Garcia-Mon- 
drjar and Fernfindez-Mendiola, 1989, 1991; Van 
Wagoner et al., 1990; Mitchum and Van Wagoner, 
1991; N. Christie-Blick, unpublished data), and 
the distinction of orders of sequences is for the 
most part arbitrary and site-dependent. Here, to 
provide a common basis for discussion, I briefly 
review the most important attributes of deposi- 
tional sequences, with particular reference to two 
well known seismic examples. Information is 
drawn both from existing literature and from my 
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Fig.1. Conceptual cross sections in relation to depth (A) and geological time (B) showing stratal geometry, systems tracts and the 
distribution of siliciclastic facies within unconformity-bounded depositional sequences deposited in a basin with a shelf break 
(modified from Vail, 1987, specifically to include offlap). Systems tracts: S M S T =  shelf margin; H S T =  highstand; T S T =  transgressive; 
L S T = l o w s t a n d .  Sequence boundaries: s b 2 = t y p e  2; s b l = t y p e  1. Other abbreviations: i s s = i n t e r v a l  of sediment starvation; t s =  

transgressive surface (corresponding to the time of maximum regression); iv=incised valley; sf=slope fan; b f f =  basin floor fan. 
Note that in the seismic stratigraphic literature the term submarine "fan" includes a variety of turbidite systems and sediment 
gravity flow deposits that are not necessarily fan-shaped. 

own experience in sequence stratigraphic studies 
during the past decade. 

Stratal geometry 

Unconformity-bounded depositional sequences 
are typically characterized by stratal onlap at the 
base (in marine, coastal and non-marine settings) 
and by offlap at the top (Fig.2). By onlap and 
offlap we mean the progressive up-dip termination 
of strata against an underlying and overlying sur- 
face, respectively (Swain, 1949; Mitchum, 1977). 
Offlap includes both toplap, in which stratal ter- 
mination is inferred to be due largely to prograda- 
tion and sedimentary bypassing, and erosional 
truncation, in which stratal relations are due at 

least in part to the removal of previously deposited 
sediment. Strata that terminate in one direction 
by onlap or otttap may terminate in another by 
downlap, and downlap surfaces are therefore pre- 
sent both within and at the base of depositional 
sequences (dls in Fig.2) (Vail et al., 1984; Vail, 
1987; cf. Hubbard, 1988). In three dimensions, an 
individual stratum may also terminate by both 
onlap and offlap, as well as by downlap. This is 
especially the case if the underlying unconformity 
is characterized by significant topographic relief, 
as in some fault-controlled basins such as grabens 
for example. Apparent geometry necessarily varies 
from one seismic reflection profile or cross section 
to another, and in some cases the discordance 
between a sequence boundary and overlying and 
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Fig.2. Conceptual cross section illustrating stratal geometry within an unconformity-bounded depositional sequence (simplified from 
Fig.l). The transition from stratal onlap to otflap, and the corresponding transition from sigmoid to oblique clinoforms, is located 
within the highstand systems tract (HST). Other systems tracts: TST=transgressive; LST=lowstand. Other abbreviations: dls= 
downlap surface within the sequence; ts= transgressive surface; iv = incised valley. 

underlying strata may be too subtle to be resolved 
at the scale of observation. 

Sequences tend to be markedly asymmetrical, 
with stratal onlap commonly accounting for a 
larger part of any cycle of deposition than stratal 
offlap, and clinoforms associated with prograda- 
tion in the upper part of a given sequence typically 
evolve from a sigmoid to an oblique configuration 
(Fig.2) (Vail, 1987; Sarg, 1988) 1. This geometric 
asymmetry of  depositional sequences is also re- 
sponsible for the familiar sawtooth shape of  the 
coastal onlap curve (Fig.3A). However, the exis- 
tence of offlap demonstrates that in general se- 
quence boundaries develop over a finite interval 
of time, and not instantaneously. Offlap cannot be 
attributed solely to erosional truncation of origi- 
nally sigmoid clinoforms. In many cases this would 
require an unreasonable amount  of  erosion, as 
well as a marked increase in the sediment supply 
in order to account for observed progradation. 
The horizontal segments of  the coastal onlap curve 
are therefore artifacts, representing no more than 
the conventional ages of  unconformities, and they 

1By sigmoid clinoforms we mean those that flatten out up dip 
and onlap against an underlying sequence boundary. Oblique 
clinoforms are associated with ofltap (Mitchum et al., 1977, 
fig.6). Note that this terminology differs from that of Vail 
(1987, fig.6), who refers to prograding clinoforms as offtapping 
for both sigrnoid and oblique configurations; and also from 
that of Bosellini (1984, fig.7), who restricts the term offlap 
specifically to sigmoid stratal geometry, that is, prograding 
depositional units with concordant upper boundaries. 

do not indicate the manner in which sequence 
boundaries actually form (cf. Posamentier et al., 
1988). I have argued elsewhere that coastal onlap 
curves are of limited utility because they cannot 
be constructed or compared objectively (Christie- 
Blick et al., 1988, 1990). If the purpose of such a 
curve is to display variations in the up-dip extent 
of strata within depositional sequences, then it 
ought to consist of two oblique segments, a lower 
one representing onlap and an upper one represent- 
ing the offlap phase (Fig.3B). 

The gross geometrical features of  depositional 
sequences are common to both terrigenous and 
carbonate-dominated successions, and are il- 
lustrated in Figs.4 and 5 by means of seismic 
reflection profiles reproduced from A.W. Bally's 
"Atlas of  Seismic Stratigraphy" (Bally, 1987, 1988, 
1989). Miocene strata of the Baltimore Canyon 
trough, offshore New Jersey, provide an example 
of sequence development in a terrigenous ramp 
setting on a thermally old passive continental 
margin (Fig.4) (Greenlee, 1988; Greenlee  and 
Moore, 1988). Strata of mid-Permian age in the 
Midland basin of west Texas illustrate mixed car- 
bonate and siliciclastic sequences along the north- 
ern outer margin of a foreland basin peripheral to 
the Marathon thrust and fold belt (Fig.5) (Sarg, 
1988, 1989). In each case, sequence boundaries are 
indicated by bold lines, and reflection terminations 
by arrows. Onlap and downlap are observed at 
the base of  many depositional sequences. Offlap is 
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Fig.3. (A) A diagrammatic coastal onlap curve of the sort that would conventionally be distilled from cross sections like the one 
shown in Fig.1 (e.g., Haq et al., 1987, 1988). (B) A modified coastal onlap curve that incorporates the existence of oMap beneath 
each of the sequence boundaries shown. Note that the time of  maximum onlap in a given sequence systematically predates the 
upper boundary of  the sequence, as it is dated at a correlative conformity. Abbreviations: s b l  and sb2 = type 1 and type 2 sequence 
boundaries; cs = condensed section; iss = interval of  sediment starvation of this paper (a term that specifies the process of condensation; 
Christie-Blick, 1990). 

well developed at several horizons, especially at 
sequence boundaries 13.8 and 12.5 in Fig.4, and 
at the tops of sequences 1, 2 and 3 in Fig.5. 

Although sediments commonly prograde from 
areas of low subsidence rate to areas of higher 
subsidence rate, as in the above examples, this is 
not necessarily the case. For example, some car- 
bonate platforms with well developed rims pro- 
grade continentward, towards their lagoons 
(Aitken, 1978; Grotzinger, 1986), and siliciclastic 
sedimentary systems on the inner margins of fore- 
land basins also tend to prograde towards areas 
of less rapid subsidence (Allen and Homewood, 
1986). The result of this different arrangement of 
depocentres with respect to the sediment transport 
direction is to accentuate offlap where the subsi- 
dence rate is relatively low, and stratal concordance 
where the subsidence rate is high (e.g., Swift et al., 
1987). 

Time-stratigraphic significance of sequence 
boundaries 

The geometrical characteristics of depositional 
sequences are consistent with the observation that 
the hiatus represented by a subaerial unconformity 
(sequence boundary) tends to be greatest in areas 
for which the rate of subsidence is low, generally 
at basin margins, and least where unconformities 
pass laterally into correlative conformities 
(Fig.lB). Conformities are commonly located 
within marine deposits and where rates of subsi- 

dence and sediment accumulation are high. Despite 
the obvious diachroneity of strata immediately 
above or below a sequence boundary at basin 
margins (e.g., Johnson, 1987), most such bound- 
aries have time-stratigraphic significance at the 
resolution of available dating methods. That is, 
strata overlying an unconformity tend to be every- 
where younger than strata underlying it. Few 
unconformities are themselves demonstrably di- 
achronous 2 (Christie-Blick et al., 1990), and it is 
this property that allows the assignment of a 
specific age at a correlative conformity. 

Facies arrangements with respect to sequence 
boundaries 

Patterns of stratal onlap and offlap are associ- 
ated with cyclical changes in palaeobathymetry 
and shoreline position, and hence with the develop- 
ment within each sequence of a cyclical arrange- 
ment of depositional facies. Transgressive- 
regressive cycles are, however, out of phase with 
respect to sequence boundaries, which in down- 
dip locations are both overlain and underlain by 
progradational deposits, and hence form during 
times of overall regression of the shoreline (Fig.l). 

In detail, sequence boundaries exhibit a range 
of characteristics, but two main types exist (Haq 

2A diachronous unconformity is one that at a given locality is 
overlain by strata that are older than strata below the unconfor- 
mity at a different locality (Christie-Blick et al., 1990). 
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et al., 1987, 1988; Vail, 1987; Van Wagoner et al., 
1987, 1988, 1990; Posamentier et al., 1988; Sarg, 
1988). Type l boundaries are characterized by 
subaerial exposure, valley incision and locally 
marked erosion of both marine and non-marine 
sediments, by deposition preferentially in deeper 
water (e.g., turbidite systems and platform-derived 
aliodapic carbonate breccias), and at least in places 
by a facies discontinuity involving abrupt upward 
shoaling. For example, shallow-marine terrigenous 
mudstone might be overlain directly by fluvial 
sandstone, or subtidal carbonate mudstone might 
be overlain by supratidal microbial laminites, in 
each case without evidence for the preservation of 
intermediate facies. Outcrop examples of such 
relations have been documented by Christie-Blick 
and Levy (1989) and by Grotzinger (1986) in rocks 
of Proterozoic age in the western United States 
and Canada, indicating that the fundamental con- 
trols on sedimentation have been the same 
throughout geological time! Type 2 sequence 
boundaries lack prominent facies discontinuities, 
and downward shifts in onlap are restricted to 
areas landward of the shoreline. Such subtle strati- 
graphic discontinuities are identified with compar- 
ative difficulty, especially in outcrop and in 
borehole logs. However, both types of boundary 
tend to be associated with a transition in the 
stacking pattern of higher-order sequences or para- 
sequences, from increasingly progradational (a 
forestepping pattern; Christie-Blick, 1990) to 
increasingly aggradational (Van Wagoner et al., 
1987, 1988, 1990; Posamentier and Vail, 1988). An 
outcrop example, associated with a type 1 bound- 
ary, is present in the Gallup Sandstone (Creta- 
ceous) of New Mexico (Nummedal et al., 1989; 
Nummedal, 1990). To the extent that such stacking 
patterns can be observed, even subtle type 2 se- 
quence boundaries may be recognizable. The main 
difficulty is that the manner in which parasequences 
are stacked may not be obvious, and especially in 
the case of type 2 boundaries, the change in 
stacking may not correspond exactly with the 
location of the sequence boundary. 

As a result of the phase lag between transgres- 
sive-regressive cycles and corresponding sequence 
boundaries, unconformity-bounded depositional 
sequences are divisible into three systems tracts 

(lithofacies assemblages) (Brown and Fisher, 1977; 
Van Wagoner et al., 1987, 1988). These are the 
lowstand and shelf-margin systems tracts, overly- 
ing type 1 and type 2 sequence boundaries, respec- 
tively, and characterized by forestepping to 
aggradational stacking of parasequences (stippled 
pattern in Fig.5); the transgressive systems tract, 
characterized by a backstepping arrangement of 
parasequences; and the highstand systems tract, 
characterized by an aggradational to forestepping 
stacking pattern (Van Wagoner et al., 1987, 1988, 
1990; Posamentier and Vail, 1988; Posamentier et 
al., 1988; Sarg, 1988; Christie-Blick, 1990). Al- 
though these systems tracts are commonly interpre- 
ted in terms of eustatic fluctuation, as suggested 
by the names selected, they are actually descriptive 
entities and do not require any preconceived no- 
tions about the role of eustasy in the origin of 
sedimentary cyclicity. Moreover, the term trans- 
gressive systems tract does not imply that all of 
the sediments contained within it are either marine 
or necessarily deposited during transgression. Indi- 
vidual parasequences tend to shoal upwards, and 
where abundant sediment is available, in both 
siliciclastic- and carbonate-dominated settings it is 
not necessary for either the shoreline position or 
the water depth to change much prior to deposition 
of the next highstand (a "keep-up" situation in 
the parlance of Kendall and Schlager, 1981; and 
Sarg, 1988). By definition, the top of the lowstand 
and shelf-margin systems tracts corresponds to the 
time of maximum regression of the shoreline, and 
is commonly marked by a prominent marine 
flooding surface (transgressive surface of Van Wag- 
oner et al., 1987, 1988). The boundary between 
the transgressive and highstand systems tracts cor- 
responds to an interval of sediment starvation 
(condensed section of Van Wagoner et al., 1987, 
1988; Loutit et al., 1988), to the time of maximum 
transgression, and in many cases to a regional 
downlap surface (dls in Fig.2, and dashed lines in 
Figs.4 and 5). 

Drowning unconformities 

A "drowning unconformity" is a discontinuity 
created by the drowning of a carbonate platform 
either as a result of submergence beneath the 
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photic zone or through burial by prograding ma- 
rine siliciclastic sediments or volcanic rocks at a 
relatively high stand of sea level (Schlager and 
Camber, 1986; Schlager, 1989). These authors rec- 
ognized that siliciclastic sediments commonly accu- 
mulate on gentler slopes than carbonate sediments, 
and they proposed the concept of a drowning 
unconformity as an alternative explanation for the 
stratal onlap associated with sequence boundaries. 
This interpretation is plausible from a geometrical 
point of view, but it is not consistent with the 
distribution of sedimentary facies. Drowned plat- 
forms are typically overlain by deeper-water silic- 
iclastic or pelagic sediments, in many cases with 
an intervening starvation interval or marine hard- 
ground (Schlager, 1981), and in the parlance of 
this paper and most of the sequence stratigraphic 
literature drowning unconformities are flooding 
and/or downlap surfaces within unconformity- 
bounded depositional sequences (Fig. 1). 

Sequence boundaries in carbonate rocks are 
associated with (1) geographically restricted low- 
stand deposits consisting of allochthonous slope 
and platformal debris, and siliciclastic sediment 
preferentially transported into the deeper basin 
while the platform was exposed or partially ex- 
posed, (2) evidence for erosion in both slope and 
platform settings, in some cases with incised valleys 
filled by fluvial sediment, and (3) evidence for 
meteoric diagenesis, including the development of 
karst (Sarg, 1988, 1989; Garcia-Mond~jar and 
Fernfindez-Mendiola, 1989, 1991). Problems in 
interpretation arise when sequence boundaries be- 
come amalgamated with flooding surfaces or are 
simply less obvious than such surfaces, and evi- 
dence for platform exposure is not well developed. 
This appears to be the case, for example, with the 
interpretation of the well-known belt of reefal 
platforms of Middle to Late Devonian age that 
crop out along the northern margin of the Canning 
basin in Western Australia (Playford, 1980; Play- 
ford et al., 1989). Backstepping of the platforms 
in Frasnian time and the termination of reef growth 
in the Famennian are ascribed quite reasonably 
by Playford to abrupt rises in relative sea level 
and drowning, but recent work in co-operation 
with Playford and the Australian Bureau of Min- 
eral Resources suggests the existence of several 

unconformity-bounded depositional sequences 
within the same strata. The preservation of evi- 
dence for exposure depends on the degree and 
duration of exposure, on the climate (including 
rainfall), and on whether appreciable erosion took 
place during subsequent transgression. 

Related to the concept of a drowning unconfor- 
mity is an idea recently advanced by Pitman (1990) 
that in terrigenous settings also even type 1 se- 
quence boundaries may be due to marine erosion 
during intervals of regional transgression. Erosion 
is known to take place in both the offshore mar- 
ine environment and the shoreface (e.g., the 
ravinement process of Swift, 1968; Demarest and 
Kraft, 1987; Nummedal and Swift, 1987; Penland 
et al., 1988; Swift and Thorne, 1990). However, as 
in carbonate rocks, sequence boundaries and 
flooding surfaces are stratigraphically distinct and 
can usually be differentiated (e.g., Nummedal and 
Swift, 1987; Baum and Vail, 1988; Christie-Blick 
and Levy, 1989; Van Wagoner et al., 1990; Weimer, 
1990). Pitman's interpretation of sequence bound- 
aries is incompatible with available geological 
observations. 

Origin of unconformities 

A qualitative conclusion to be drawn from these 
basic observations is that the origin of unconformi- 
ties and the development of ofllap-onlap geometry 
can be considered in terms of the expansion and 
subsequent burial of zones of non-deposition or 
erosion. In non-marine and shallow-marine en- 
vironments patterns of erosion and sediment 
accumulation, and hence the development of un- 
conformities, are controlled largely by two inter- 
related factors. These are changes in depositional 
base level, a hypothetical surface asymptotic ap- 
proximately to sea level (or lake level), and above 
which significant sediment accumulation is not 
possible (Barrell, 1917; Mackin, 1948; Wheeler, 
1964; Leopold and B~ll, 1979; Ross, 1990); and 
sediment supply or production. Such factors as 
variations in the grain size and cohesion of avail- 
able terrigenous sediment, the water temperature, 
salinity, oxygen content and availability of nutri- 
ents at sites of carbonate accumulation, river dis- 
charge, the direction and strength of marine 
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currents, water depth and depth to wave base, and 
the geometry of the depositional surface also influ- 
ence patterns of sedimentation, and they may be 
important in the development of small-scale sedi- 
mentary cyclicity. However, they are probably not 
by themselves responsible for the existence of most 
unconformity-bounded depositional sequences, 
and are not considered further here. 

The elevation of base level at a particular locality 
is primarily a function of the rates of change of 
subsidence and eustatic sea level, but is influenced 
also by sediment supply. By definition, points at 
base level are subject to sediment bypassing, and 
those above base level, to erosion. Expansion of 
the zone of bypassing (and the development of 
offlap) is therefore promoted by a decrease in the 
rate of subsidence and by an increase in the rate 
ofeustatic fall; and erosion surfaces tend to become 
buried (onlap) when the rate of subsidence in- 
creases or the rate of eustatic fall decreases (or sea 
level is rising). Sediment supply influences both 
the configuration of topographic profiles and 
shoreline position, which itself affects the elevation 
of depositional base level at a given point landward 
of the shoreline. From a qualitative point of view, 
changes in sediment supply would therefore be 
expected to influence the landward as well as the 
seaward extent of sediment accumulation at any 
given time. Under conditions of constant subsi- 
dence rate and constant rate of eustatic fall, regres- 
sion due to an increase in sediment supply would 
be accompanied by progressive onlap as rivers 
graded to higher elevations, and transgression due 
to a decrease in sediment supply would be accom- 
panied by ofltap. 

Several obvious feedbacks are involved here. 
For example, changes in depositional base level 
themselves influence sediment supply through the 
effects of locally enhanced erosion or storage of 
sediment. Shoreline variations induced by changes 
in depositional base level therefore result in a 
negative feedback on base-level change. Sediment 
accumulation also produces a load, which tends 
to augment tectonically driven subsidence, and 
hence to increase the amount of space available 
for additional sedimentation. However, to the ex- 
tent that loads are accommodated by flexure of 
the lithosphere rather than by local isostatic corn- 

pensation, this feedback is more complicated 
because sedimentation in one part of the basin 
may lead to either a decrease or an increase in the 
rate of subsidence in adjacent areas (Watts and 
Thorne, 1984; Reynolds et al., 1990). The space 
available for sedimentation during a given time 
increment is also influenced by the effects of com- 
paction and in some cases by deformation of 
existing sediments through diapirism and detached 
faulting. 

To quantify these considerations is difficult. Not 
only are the feedbacks involved poorly understood 
but the response of the depositional system to any 
perturbation is time-dependent, and the perturb- 
ations are themselves both time-dependent and 
operative at a broad range of frequencies. Static 
equilibrium conditions seldom exist. For these 
reasons, the task of isolating any of the variables 
in the real world is daunting: there are simply too 
many degrees of freedom. 

Quantitative considerations 

The most sensible way of accommodating the 
many uncertainties in a quantitative model is to 
make some reasonable first-order assumptions, and 
then to consider the sensitivity of the conclusions 
to specific factors not initially included. Of course, 
the successful reproduction of specific features of 
observed stratigraphy does not guarantee that all 
or even any of the most important parameters 
have been included. For example, most basin- 
filling models generate onlap-ofltap cycles, but few 
focus specifically on the origin of the unconformi- 
ties between depositional sequences. 

A point of departure for this paper is an analysis 
by Thorne and Watts (1984) of the conditions for 
the formation of unconformities in predominantly 
siliciclastic sediments in passive continental mar- 
gins. The tectonic subsidence (Y) of a basin can 
be written (modified from Steckler and Watts, 
1982): 

y=~,S,~Pr.-Ps ~_AsL Pw 1 LPm - Pw p~_p~ ,  -iV W d -~ ASL ( 1 ) 

where S* is the change in sediment thickness 
corrected for the effects of compaction; AsL is the 
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eustatic change during the interval of  sedimenta- 
tion (positive downwards, following the sign con- 
vention of Thorne and Watts, 1984); Wd is the 
water depth at the end of the same interval; Pro, 
Ps, and Pw are the densities of mantle, sediment 
and water, and @ is the basement response function 
relating sediment and water loads to tectonic sub- 
sidence through convolution (indicated by .). 
Note that Pm and Pw are to a first approximation 
constants but that ps gradually changes with 
time as the sediment becomes lithified. The 
values of Wd and S* also vary spatially as well 
as with time. To simplify the discussion, we as- 
sume local isostatic compensation, and eqn. (1) 
becomes: 

y = s ,  Pm-Ps + Wd_I_AsL Pm (2) 
Pm--Pw Pm--Pw 

A visual representation of this relation is given in 
Fig.6A. In considering the origin of subaerial 

unconformities, we are interested primarily in sites 
located above sea level, not ones below sea level. 
For a point above sea level, eqn. (2) must be 
modified to correct for the sediment load above 
the datum, resulting in the somewhat less familiar 
relation (Fig.6B): 

Y =  S* Prn --  Ps + (h + ASL ) Pm (3) 
P ~ -  Pw Pm--  Pw 

w h e r e  h is the  e l e v a t i o n  o f  the  s e d i m e n t  su r face  

with respect to sea level (positive downwards), and 
like W~ varies in both space and time. The term 
h is defined in this way to make it exactly equivalent 
to and of the same sign as W d. By taking the time 
derivative, we obtain an expression for the rate of 
tectonic subsidence (I?): 

]k=,~ * p m - p s  S *  /Ss _t_ (~ _1_/~SL ) Pm 
P r n  - -  P w  Pm - -  P w  Pm - -  P w  

(4) 

A POINTS BELOW SEA LEVEL B POINTS ABOVE SEA LEVEL 

LOADED 
SECTION 
INITIAL SEA LEVEL 

ASL 
Wd 

S* 

UNLOADED LOADED UNLOADED 
SECTION SECTION SECTION 

Pw -Y- -h 

K// I 
,CRUST / 

Y 

S*+ Wd + ASL-  Y 

S*+ h + ASL-Y 
Fig.6. Derivation of tectonic subsidence (Y) for sedimentation below (A) and above sea level (B), assuming local isostatic 
compensation and that the base of the sedimentary column was initially at sea level. Tectonic subsidence is the subsidence that 
would take place in water in the absence of sedimentation and eustatic change. Simple balancing of "loaded" and "unloaded" 
columns leads to eqn. (2) and (3) (see text). Other abbreviations: S*=change in sediment thickness corrected for the effects of 
compaction; AsL=eustatic change during the interval of sedimentation (positive downwards); Wd=water depth at the end of the 
same interval (case A); h = elevation of the sediment surface with respect to sea level (positive downwards, case B); Pro, P~, and p,  = 
densities of mantle, sediment and water. 
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where S* is the rate of  increase in sedimentary 
thickness, corrected for compaction; /~ is the rate 
of  decrease of  elevation with respect to sea level; 
ASL is the rate of eustatic fall; and Ps is the rate 
of increase in the density of  the sediments. Ps varies 
slowly with time, especially when the total thick- 
ness of sediment deposited is large, and more 
important, Ps is approximately constant for short 
intervals. The second term on the right side of  
eqn. (4) is therefore both small and constant for 
short intervals, and for the purpose of  this analysis 
eqn. (4) may be approximated as: 

~.= ,~. Pm -- Ps + (]~ + ASL) Pm (5) 
Pm -- Pw Pm -- Pw 

Line of critical bypassing 

The line of critical bypassing is defined here as 
an imaginary line on the earth's surface separating 
zones of  bypassing and/or  erosion from zones of  
sediment accumulation (Lc in Fig.7). By critical, I 
mean that only a small change in equilibrium 
conditions or a small increment of time is required 

for sites of  bypassing and/or  erosion near the line 
to become ones of  sedimentation, and vice-versa. 
The stratigraphic record of  lateral shifts in the 
location of  critical bypassing is onlap and offlap 
(Fig.7B and C), and indeed lateral variations in 
the distribution of  erosion, bypassing and sediment 
accumulation are implicit in these terms. However, 
the concept of  critical bypassing emphasizes the 
genetic relation between onlap and offlap, and 
more important it takes into account the effects of  
post-depositional erosion. The instantaneous point 
of  offlap for a given horizon in a given profile is 
commonly not preserved. 

The position of  the line of  critical bypassing is 
typically landward of  the shoreline, and indepen- 
dent of  it. That is, although both features may 
migrate as a result of  changes in depositional base 
level or sediment supply, and in this sense they are 
related, they do not necessarily migrate at the same 
rate or even in the same direction (cf. Pitman, 
1978; Pitman and Golovchenko, 1983; Angevine, 
1989; Reynolds et al., 1990). For example, early 
highstand deposition is associated with progressive 
stratal onlap and with overall regression of  the 

LINE OF CRITICAL BYPASSING (Lc) 

BYPASSING - 
AND/OR 

EROSION 

INCREASING RATE OF TECTONIC SUBSIDENCE 

DEPOSITIO- SHORELINE 

B Lc C 
Lc 

Fig.7. (A) Cross section illustrating the definition of the line of critical bypassing (a point in two dimensions), which at any instant 
separates zones of bypassing and/or erosion from zones of sediment accumulation. Abbreviations: h=elevation of the sediment 
surface with respect to sea level (positive downwards); Wd=water depth; S* = incremental aggradation of the sediment surface 
corrected for the effects of compaction. Each of these terms varies in both space and time. (B and C) The development of onlap 
(B) and offlap (C) by lateral migration of the line of critical bypassing, shown here for the youngest increment of sediment. 
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shoreline (Fig.l), and the development of a type 
1 sequence boundary (involving subaerial exposure 
of marine sediments) requires the line of critical 
bypassing to "catch up" with the regressing shore- 
line during the late highstand. An exception is the 
case in which little or no sediment is transferred 
across the shoreline: all sediment is either produced 
in situ or brought laterally along the shelf (e.g., 
some carbonate platforms), and under those condi- 
tions the line of critical bypassing is more or less 
coincident with the shoreline. 

At the line of critical bypassing (L~ in Fig.7), 
S*=0  by definition, and: 

I?LC ----" (/~LC +/~SL) Pm (6) 
Pm- Pw 

where the I:'LC and /~LC refer to the values of I/" 
and /~ at Lc. The term /~ is in general non-zero, 
and landward of Lc assumes a value that depends 
in part on the rate of erosion. Basinward of L~,/~ 
is sensitive to geographic changes in shore!ine 
position, as well as to changes in the shape of the 
depositional profile. For a profile that changes 
position but not its overall shape with respect to 
the shoreline (a steady-state profile of Thorne and 
Swift, 1990),/~>0 for transgression, and/~<0 for 
regression. For a profile that is graded to a station- 
ary shoreline (an isostatic equilibrium profile of 
Thorne and Swift, 1990),/~ = 0 at all points between 
L¢ and the shoreline. 

The concept of a line of critical bypassing 
differs from that of an equilibrium point, which 
is defined by Posamentier et al. (1988) as a point 
on a given profile at which the rate of eustatic 
fall equals the rate of subsidence of a stratigraphic 
datum located at or above the top of the basement. 
By subsidence, these authors appear to mean the 
total subsidence during some increment of time, 
including that due to sediment loading and to 
compaction of any sediment beneath the datum 
(H.W. Posamentier, pers. commun., 1990). At 
an equilibrium point, the stratigraphic datum is 
by definition stationary with respect to the sea 
surface, and in terms of the parameters used in 
this paper, this is equivalent to S*+/~=0 or to 
S*+ l~d=0 , depending on whether the deposi- 
tional surface is above or below sea level. Eustasy 

does not enter into either relation because in this 
case subsidence is measured with respect to the 
sea surface not the centre of the earth. An 
alternative way of defining an equilibrium point 
would be to refer eustasy to the rate of tectonic 
subsidence, with a correction for the water load. 
In this case, the equilibrium point would be 
given by: 

~ .  Pm--Ps +1~=0 
Pm 

or  (7) 

i~* Pm--Ps + l ~ d =  0 
Pm--Pw 

These expressions allow artificial distinctions 
between "marine" and "subaerial" accommoda- 
tion (Posamentier et al., 1988; Posamentier and 
Vail, 1988) to be rationalized, and they are equiva- 
lent to the definition of critical bypassing (eqn. 6) 
when/~Lc = 0. 

Limits to accommodation 

The concept of accommodation refers to the 
space made available for potential sediment accu- 
mulation (Jervey, 1988; Posamentier et al., 1988). 
As a first approximation, we can think of accom- 
modation as some function of relative sea-level 
change (Posamentier et al., 1988), but in order to 
specify it quantitatively we need to constrain the 
elevation term/~ in eqn. (5) and (6). An imaginative 
way of accounting for variations in elevation has 
been suggested by Flemings and Jordan (1989) 
and Jordan and Flemings (1990). Following studies 
by Kenyon and Turcotte (1985), they assume that 
erosion and sediment transport are approximated 
by slope-controlled diffusion, and that sediment 
transport is proportional to surface gradient. This 
leads to the relation: 

/~o = ?Zh° (8) 
K OX 2 

in which/~o is the rate of change of elevation with 
respect to a fixed datum (positive upwards), K is 
a transportation coefficient with units of length2/ 
time, and x is horizontal position. The degree to 
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which the depositional surface aggrades or de- 
grades (/~o >0  or/~o <0, respectively) depends on 
the local curvature of the slope (a profile that is 
concave upwards has positive curvature). Local 
topography is smoothed with time, and in the 
Flemings and Jordan model clinoforms are pro- 
duced in the marine environment by assuming that 
marine sediment transport is less efficient than 
non-marine transport. 

Since/~o = -(/z + ASL), eqn. (8) can be written: 

- K  SL-- 0x2 (9) 

where negative curvature corresponds with a slope 
that is concave upwards. At each point along the 
profile, substituting in eqn. (5): 

1>=~, Pm--P...___~s + Pm ~2h (10) 
Pm -- Pw Pm-- Pw Kox2 

and at the line of critical bypassing (x=xLc), 
substituting in eqn. (6): 

]~'LC -- Pm O2h 
pm_ pwK-~x2 (x= xLc) (11) 

In the light of these considerations, under what 
conditions do unconformities develop? Here we 
consider the influence of changes in sediment sup- 
ply and of changes in the rate of eustatic fall or 
rate of tectonic subsidence. 

Changes in rate of  sediment supply 

We begin by assuming an isostatic equilibrium 
profile (Thorne and Swift, 1990), a constant rate 
of sediment supply, a constant rate of eustatic fall, 
and that the rate tectonic subsidence is constant 
at each point along the profile but increases in a 
basinward direction (Fig.8). The initial position of 
the line of critical bypassing is Lc, and /~LC=0 
(eqn. 6). An increase in the rate of sediment supply 
leads to regression of the shoreline (Fig.8A). Dy- 
namic equilibrium can be maintained by gradual 
aggradation of the alluvial profile (/~<0 at all 
points), and by a concomitant shift of the line of 
critical bypassing towards Lc' where the rate of 
tectonic subsidence is smaller. The line of critical 
bypassing is unlikely to remain at its initial position 

'C' 

A 

INFLUENCE OF SEDIMENT SUPPLY 

ONLAP OUR,NG REQRESS,ON 
. . . .  S"OREL,NE 

~ ~  !SEA LEVEL 
H 

B Lc OFFLAP DURING TRANSGRESSION 

L d ' ~ L  ¢' SHORELINE H 

Fig.8. Cross sections illustrating the influence of sediment 
supply on the location of the line of  critical bypassing (L~). 
Bold lines are sequence boundaries, and fine lines are other 
time surfaces. Initial conditions are an isostatic equilibrium 
profile (/~ = 0 at all points between Lc and the shoreline; Thorne 
and Swift, 1990), a constant rate of sediment supply, a constant 
rate of eustatic fall, and a rate of tectonic subsidence that is 
constant at each point along the profile but increases in a 
basinward direction. After two time increments, in (A) there 
is an abrupt  increase in sediment supply leading to regression 
of the shoreline, and in (B), an abrupt  decrease in sediment 
supply leading to transgression. In each case, the line of critical 
bypassing migrates to L~'. As a new isostatic equilibrium profile 
is established, and under conditions of local isostatic compensa- 
tion, the line of  critical bypassing tends to return to its initial 
geographic position (Lc"), but at a different elevation (higher 
in A, lower in B). The elevation of Lc (H) is initially fixed with 
respect to sea level, and the loading due to the sediment column 
between Lc and Lo" is not shown. 

because this would lead to a reduction in the 
gradient of a depositional profile (the elevation of 
L¢ is fixed with respect to sea level when/~Lc = 0). 
Indeed, an increase in sediment flux would favour 
a steeper profile (Snow and Slingerland (1987), 
and eqn. (10) above). Similarly, assuming the same 
initial conditions, a decrease in the rate of sediment 
supply leads to transgression of the shoreline 
(Fig.8B). Dynamic equilibrium can again be main- 
tained by a gradual lowering of the alluvial profile 
(/~ > 0 at all points), and by a downward shift of 
the line of critical bypassing towards Lc' where the 
rate of tectonic subsidence is larger. Note that this 
is not necessarily accomplished by erosion, but 



ONLAP, OFFLAP AND UNCONFORMITY-BOUNDED SEQUENCES 49 

through a decrease in the rate of sediment accumu- 
lation along the profile. 

In the process of establishing a new isostatic 
equilibrium profile (/~ = 0 at all points), the line of 
critical bypassing tends to return to its initial 
geographic position controlled by the relative mag- 
nitudes of/ksL and I? (eqn. 6). Only its elevation 
is different (L," in Fig.8). Under conditions of 
constant sediment supply, the geographic location 
of the line of critical bypassing therefore appears 
to be less sensitive to sediment supply than is the 
location of the shoreline. The situation is somewhat 
more complex in the case of flexural isostasy 
because the rate of subsidence at the point of 
onlap is influenced by the rate at which the adjacent 
sedimentary load increases. That is, the rate of 
subsidence at a given point is not entirely of 
tectonic origin even when the rate of sediment 
accumulation at that point is zero. 

These conclusions are consistent with available 
geomorphological literature (reviewed by Posa- 
mentier and Vail, 1988), and indicate that small 
shifts in the position of onlap (type 2 sequence 
boundaries) can be produced by changes in sedi- 
ment input without changing either/kSL or I;'. Type 
2 boundaries account for 59% of the 118 Mesozoic 
and Cenozoic unconformities identified by Haq et 
al. (1987, 1988) as global sequence boundaries, 
and more attention needs to be paid to the influ- 
ence of sediment supply on the origin of these 
features. In contrast, type 1 sequence boundaries 
require the lowering of depositional base level 
seaward of the shoreline, and cannot be explained 
in this way. 

Changes in rate o f  eustatic fall  or rate o f  tectonic 
subsidence 

To illustrate the role of eustasy and tectonic 
subsidence in the origin of unconformities, we 
assume an isostatic equilibrium profile and a con- 
stant rate of sediment supply (Fig.9A). As before, 
the initial position of the line of critical bypassing 
is L¢, and /~Lc=0. A small but instantaneous 
increase in the rate of sea-level fall results in 
gradual offlap towards a new line of critical bypass- 
ing (at L~' in Fig.9B), for which the rate of tectonic 
subsidence is correspondingly greater than at L¢ 

I N F L U E N C E  OF  E U S T A S Y  

A ONLAP AT CONSTANT RATE 
r t  OF EUSTATIC FALL 

s . o " E L i N E  " 

OFFLAP AND REGRESSION 
D DUE TO INCREASE IN 

RATE OF EUSTA'nC FALL 
L c  %. - 

Fig.9. Cross sections illustrating the influence of eustasy on the 
location of the line of critical bypassing (Lc). Fine lines are 
time surfaces. Initial conditions (A) are as in Fig.8. The 
elevation of Lc (H) is initially fixed with respect to sea level. 
After two time increments (B), there is an abrupt increase in 
the rate of eustatic fall, leading to the onset of regression and 
migration of the line of critical bypassing towards a new 
equilibrium position (Lc'). 

(eqn. 6). All points landward of the shoreline are 
immediately subject to relative uplift with respect 
to the sea surface (/~ < 0), and dynamic equilibrium 
is maintained by a gradual decrease in the rate of 
sediment accumulation as a new isostatic equilib- 
rium profile is achieved (/~ = 0 again at all points). 
The position of onlap does not shift instantane- 
ously to Lc' (as implied by Christie-Blick et al., 
1990) because the location of the line of critical 
bypassing is subject to the negative feedback re- 
lated to the onset of shoreline regression (discussed 
above), an effect which depends on the rate of 
regression and is not readily quantifiable. How- 
ever, it is not possible without an increase in 
sediment supply for the line of critical bypassing 
to migrate in a landward direction (as in Fig.8A) 
because a feedback can change only the rate at 
which equilibrium is achieved and not the direction 
of the equilibrium shift. 

An important conclusion is that the downward 
shift in coastal onlap from Lc to Lc' is primarily 
a response to an increase in the rate of eustatic 
fall (see also Reynolds et al., 1990), rather than to 
the magnitude of fall during the time interval 
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involved. Hence, the distance between L¢ and L¢', 
no matter how it is measured, in general provides 
no direct information about the amplitude of sea- 
level change, contrary to the method originally 
proposed by Vail et al. (1977) for measuring eu- 
static falls from seismic stratigraphy. Relatively 
large shifts in the position of onlap can also be 
achieved at modest rates of eustatic change, rates 
that are on the same order as typical rates of 
tectonic subsidence (< 1 cm/1000 yrs; eqn. 6). 
Rapid eustatic falls with amplitudes of as much as 
100 m, inferred for the development of some type 
1 unconformities during times of minimal conti- 
nental ice cover such as the Cretaceous (Haq et 
al., 1987, 1988), are neither indicated by available 
data (Christie-Blick et al., 1990) nor likely in the 
context of this analysis. 

A corollary is that a downward shift in coastal 
onlap may be achieved equally well by either an 
increase in the rate of eustatic fall or a decrease in 
the rate of tectonic subsidence, and that there is 
nothing inherently eustatic about onlap-offlap cy- 
cles. As a simplification, it is commonly assumed 
that tectonic subsidence varies only on long time 
scales (> 10 m.y.), and that high-frequency oscilla- 
tions of relative sea level are of eustatic origin (e.g., 
Haq et al., 1987). This is a reasonable working 
hypothesis, but one that has not yet been adequately 
tested against geological data. Cloetingh et al. (1985, 
and several subsequent articles) and Karner (1986) 
have proposed from theoretical studies that varia- 
tions in the horizontal stresses within the lithosphere 
can induce vertical motions of tens of metres, at 
rates comparable to typical rates of tectonic subsi- 
dence. There appear to be a number of difficulties 
with this mechanism that cast doubt on its relevance 
to the origin of unconformity-bounded sequences 
(Christie-Blick et al., 1990; G.D. Karner, pers. 
commun., 1990), but other tectonic mechanisms for 
short-term sea-level change may yet be discovered, 
and it is premature to assume that eustatic and 
tectonic controls on sea level may be distinguished 
simply on the basis of frequency. On the other 
hand, evidence in a given basin for crustal deforma- 
tion coeval with the development of a sequence 
boundary is not sufficient to demonstrate that the 
unconformity is of tectonic origin (e.g., Hubbard, 
1988) because unconformities of eustatic origin may 

be enhanced by tectonic activity (Vail et al., 1984). 
In other words, the origin of the observed stratal 
geometry needs to be distinguished from the ulti- 
mate control of the timing of the unconformity. 

Rapid eustatic change 

The formation of prominent sequence bound- 
aries does not require rapid or large changes in 
eustatic sea level, but in some cases eustatic 
changes are both rapid and of high amplitude. For 
example, there have been several times in earth 
history when appreciable areas of the continents 
were covered by glacial ice: the Neogene, Permo- 
Carboniferous, late Devonian, late Ordovician to 
early Silurian, and at several times in the Protero- 
zoic (Hambrey and Harland, 1981). During those 
times, sea level is likely to have fluctuated by 
several tens of metres and at rates several orders 
of magnitude faster than typical rates of tectonic 
subsidence (Pitman and Golovchenko, 1983; Gor- 
nitz and Lebedeff, 1987). Climatically induced 
variations in lake level in closed depositional ba- 
sins, such as those of Triassic-Jurassic age in 
eastern Noth America (Olsen, 1986), and the late 
Miocene Messinian crisis of the Mediterranean 
(Cita, 1982) are similarly examples of large and 
rapid changes in depositional base level. Under 
such conditions, the rate of tectonic subsidence is 
effectively zero, and to a first approximation, 
changes in elevation or water depth at a given site 
are related directly to the amplitude of eustatic 
change (or local change in base level) and to the 
thickness of accumulated sediment (eqn. 2 and 3). 

Onlap related to eustatic rise and time of 
maximum onlap 

During times of eustatic rise, the location of the 
line of critical bypassing, and hence of coastal and 
non-marine onlap, is controlled by relict topogra- 
phy and the sediment supply. This is because the 
term ]~ in eqn. (6) is positive (decreasing elevation) 
even for points at which the rate of subsidence is 
zero. Onlap continues after the time of maximum 
flooding because ]~ is then negative at the shoreline 
(regression), and excess accommodation is there- 
fore available (see Fig.8A). For oscillatory sea- 
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level change, the time of maximum onlap is 
thought to correspond to falling eustatic sea level 
(AsL > 0) when the value of/~ at the line of critical 
bypassing (/~Lc) is also negative and approximately 
equal to /~ at the shoreline (an approximation to 
a steady-state profile of Thorne and Swift, 1990). 
Any additional increase in the rate of eustatic fall 
would tend to oversteepen the depositional profile, 
and hence lead to offlap. This is because /~Lc 
eventually becomes increasingly negative more 
rapidly than does/~ at the shoreline (see Fig.9). If 
this reasoning is correct, the time of transition 
from onlap to offlap is influenced by the rate of 
regression, and hence by sediment supply, with 
largest lags with respect to the eustatic high stand 
favoured where sediment is most abundant. 

A markedly different interpretation of sequence- 
boundary development is evident in the widely 
referenced conceptual cross sections of Vail (1987), 
and discussed at length by Posamentier et al. 
(1988) and Posamentier and Vail (1988). According 
to these authors, deposition of the highstand fluvial 
wedge is a response to rapid progradation during 
a time of increasingly rapid eustatic fall, and 
maximum onlap is virtually synchronous with the 
development of the sequence boundary. Two 
difficulties with this model are as follows. First, it 
requires the line of critical bypassing to move 
landward while the rate of eustatic fall increases 
to its maximum value. I have shown above that 
this is possible only if the sediment supply is 
progressively increased. Second, the Posamentier 
et al. model does not explain offlap, and it supplies 
no compelling explanation for the supposedly 
abrupt downward shift in onlap observed at se- 
quence boundaries. For these reasons, it seems 
more likely that rapid highstand progradation is 
a response to offlap and that the fluvial wedge 
develops preferentially during early not late high- 
stand deposition (see Fig. 1). 

Timing of sequence boundaries 

There is general agreement that sequence bound- 
aries tend to form during times of accelerated 
eustatic fall or during times of reduced rate of 
tectonic subsidence, and that if sea level is actually 
rising, uplift at a rate exceeding the rate of eustatic 

rise is required for a sequence boundary to develop. 
Beyond the unresolved issue of the role of tectonics 
in the formation of unconformities are questions 
concerning the exact relation between the timing 
of unconformities and eustatic oscillations. In par- 
ticular, to what extent do eustatic sequence bound- 
aries correspond to times of maximum rate of sea- 
level fall (inflection points on the eustatic curve; 
Jervey, 1988; Posamentier et al., 1988), and to 
what extent are leads or lags involved (Posamentier 
and Vail, 1988; Christie-Blick et al., 1990; Jordan 
and Flemings, 1990; Reynolds et al., 1990)? No 
data are yet available to evaluate this problem, 
but it is central to a good deal of activity currently 
aimed at testing the idea that sedimentary cyclicity 
is dominated by eustasy (e.g., Haq et al., 1987, 
1988), and in which it is assumed that sequence 
boundaries of eustatic origin should be of nearly 
the same age in all marine basins (Christie-Blick, 
1990; Watkins and Mountain, 1990). If it is deter- 
mined by means of very high-resolution geochro- 
nology that prominent sequence boundaries of 
approximately the same age in two widely sepa- 
rated basins are in fact of measurably different 
age, how great a discrepancy will be required for 
us to conclude that the boundaries are not after 
all eustatic? 

Two recent papers shed some light on the issue 
of leads and lags. Using a diffusion model for 
erosion and sediment transport across a passive 
continental margin, Jordan and Flemings (1990) 
concluded that sequence boundaries may range in 
age from the time of most rapid eustatic fall 

1 typically to about g cycle later, and in some cases 
to as much as ¼ cycle later. A lag is favoured by 
inefficient non-marine transport, slow subsidence, 
large sediment flux and sea-level changes that are 
either of high frequency or high amplitude. Jordan 
and Flemings (1990) make very simple assumptions 
about passive-margin subsidence (approximated as 
a rotating rigid beam), and they do not incorporate 
isostasy or compaction. Moreover, nearly all of 
their results refer to type 2 sequence boundaries. 
Further development and testing are therefore 
needed, especially to simulate type 1 boundaries, 
and to evaluate the sensitivity of the conclusions 
to such factors as isostasy and compaction. It 
would also be useful to explore the possibility that 
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the transportation coefficient in a given environ- 
ment might vary, perhaps as a function of slope 
or according to whether sea level is rising or falling. 

A very different passive-margin model has been 
developed by Reynolds et al. (1990) to investigate 
the influence of flexural isostasy and compaction 
on the formation of unconformity-bounded se- 
quences. Tectonic subsidence is represented by a 
hinged platform tilting at a constant rate, but in 
this case the depositional surface is maintained as 
two segments, a horizontal shelf with zero water 
depth, and a slope of fixed gradient. Type 1 
unconformities are favoured under conditions of 
low sediment supply and/or low tectonic-subsi- 
dence rate, and for eustatic fluctuations that are 
rapid and/or of high amplitude. In the simplest 
case, in which isostatic effects are ignored (infinite 
flexural rigidity), type 2 sequence boundaries corre- 
spond to inflection points in the eustatic curve. 
Type 1 sequence boundaries tend to predate the 
time of most rapid fall by as much as ¼ cycle, 
although again typically less than this. The effect 
of both isostatic compensation and compaction is 
to introduce time delays in the development of 
sequence boundaries, and to promote the genera- 
tion of type 2 boundaries. Overall, the model is 
highly sensitive to sea-level change and generates 
type 1 unconformities at times of relatively slow 
eustatic fall owing to the assumption of a shelf 
fixed at sea level. Phase leads predicted for type 1 
unconformities are likely to be overestimated for 
the same reason. An important extension of this 
model therefore would be to investigate the sensi- 
tivity of the conclusions to the inclusion of onlap 
in subaerial environments, along the lines sug- 
gested in this paper. 

In these two models, we have a number of 
conditions and processes that may cause the timing 
of sequence boundaries in siliciclastic sediments 
either to predate or to postdate the time of most 
rapid eustatic fall, perhaps by as much as ¼ cycle. 
From a qualitative perspective, leads and lags of 
equivalent duration would be expected also in 
carbonate sediments. Carbonate sediments accu- 
mulate subaerially only insofar as they are trans- 
ported landward by the action of storms and the 
wind, and for this reason the line of critical bypass- 
ing may be close to sea level, as in the Reynolds 

et al. model. Carbonate accumulation rates tend 
to be high, and type 2 sequence boundaries with 
associated time lags of the sort modelled by Reyn- 
olds et al. (1990) would therefore be expected in 
ramp settings with high rates of tectonic subsi- 
dence. On the other hand, carbonate platforms are 
easily exposed during eustatic falls because they 
tend to build to sea level (Kendall and Schlager, 
1981), and type 1 boundaries with well developed 
lowstands would be expected where rates of subsi- 
dence are low, platform margins are comparatively 
steep and where there is a ready supply of terrige- 
nous sediment. As in siliciclastic sediments, type 1 
boundaries in carbonate environments would be 
expected to predate the time of most rapid sea- 
level fall, and perhaps to a greater degree. 

In the case of a given sequence boundary, the 
net lead or lag is likely to be due to a combination 
of factors. These factors may vary within a single 
basin, and certainly from one basin to another. 
This leads to the conclusion that a sequence bound- 
ary, as it is objectively identified in a basin, may 
not after all be a single physical surface, but rather 
a series of closely spaced surfaces that in different 
places have similar geometrical attributes (onlap, 
offlap and downlap) and similar relations with 
respect to sedimentary facies. An obvious test of 
the models is to attempt to measure leads and lags 
directly, for example in the Neogene, a time for 
which high-resolution geochronology is possible 
and the glacial-eustatic record is relatively well 
established (Miller et al., 1990). However, in order 
to evaluate the synchroneity of sequence bound- 
aries, to test the notion that they are fundamentally 
of eustatic origin, it will be important to select 
basins for which rates of' subsidence and sediment 
supply and sequence geometry are similar. 
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